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ABSTRACT 

This report deals with the identification of unknown parameters 

in dynamic systems.  In modeling a physical system, the problem of 

identifying the dynamics of a system are often encountered. The 

developed algorithm provides a tool to model all or parts of a dynamic 

system using input-output data sets from a real system. The methodol- 

ogy and techniques of this algorithm arc based upon linear recursive 

estimation theory. The theoretical foundation and the pragmatics of 

utilizing the ensemble data to estimate the unknown parameters are 

discussed at length in the development of the algorithm. 

As an application of the algorithm, experimental data from a 

man-in-the-loop simulation is used to estimate the parameters of a 

single axis model of the gunner. The tracking response of the gunner 

model compare favorably with data obtained from the simulation. The 

differences in tracking responses are attributed to not including 

human randomness in the model. 
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A RECURSIVE ESTIMATION ALGORITHM 
FOR IDENTIFICATION OF DYNAMIC SYSTEMS 

1.   INTRODUCTION 

This report is a discussion and documentation of an algorithm for 

identification of dynamic systems. The proposed algorithm is closely 

related to other sequential estimation algorithms proposed by Kalman, 

Mayne, Deutch,  and others over the past decade. The most signifi- 

cant and unique feature of the algorithm described here is the extent 

to which computational efficiency and accuracy are achieved and assur- 

ed.  Particular attention is given to handling of ill-conditioned 

computations, and non-stationary models. 

The algorithm described here was first implemented on a small 

computer for a real time application and subsequently has continued 

to be refined for small, highly interactive computers. The interactive 

features of the algorithm have proven to be invaluable in all stages 

of an estimation project. The analyst may interact early in an applica- 

tion to tune the free parameters of the algorithm and throughout pro- 

duction of estimates to control computing time, convergence of the 

estimates, and computer output. 

The viewpoint taken in developing and listing the algorithm des- 

cribed here was that the data upon which the estimates are based 

arrive one at a time in a discrete unedited form.  The capacity to 

store old data and the computer time are both very limited resources. 

The objective of the algorithm is to compute a new model from each new 

data set utilizing a compacted form of the data history. The extent 

to which the history is utilized is controlled by the algorithm in 

such a way as to minimize the prediction error for the model. 

The remainder of this report is a discussion of the theoretical 

foundations of the algorithm and the pragmatics of data collection and 

model validation. 



2.  THEORY 

2.1 Statistical Model. 

The basic model of the random process to be observed is 

Y=X6+V(NX1) 2.1.1 

Where Y is the vector of observations, X (N X P) is the matrix of 

controlled variables, &_  (P X 1) is the vector of parameters to be 

estimated, and V (N X 1) is the vector of observation errors. The 

observation errors are presumed to have well known first and second 

moments defined by 

E(V) = 0 2.1.2 

E(VVT)=t 2.1.3 

We wish to compute an estimate, j3, of £ such that 
•\ 

&  = K Y 2.1.4 

and       E(8) =3 (unbiased) 

This implies directly that 

K X - J_ = 0 for all & 2.1.5 

The estimation problem may be formulated as a minimum variance problem 

where K must be found such that 

Var(£) = Tr E^B-fl) (6-£)T] 2.1.6 

in minimized, subject to Equation 2.1.5. The minimization of Equation 

2.1.6 leads directly to 

T -1  -IT -1 
K = (X £ X) TfJ 2.1.7 

2.2 Model of the Observation Errors. 

In the previous section it was presumed that the covariance 

of the observation errors was known. We will now develop a statistical 

model of the observation errors which produces a sequence of covariance 

matrices, \b•, where i is conceptually an index on time. The model will 

represent an acknowledgement that observation errors increase with the 
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age of the observation. 

*U1 

a 
a 

<r^A 
2.2.1 

In this model variances occur at the value, — and increase by a factor 

•=— in each time increment. The variances are thus increasing exponent- 

ially with age such that diagonal elements, t units of time in age, 
-t o* 

are equal to (1-a)  — . 

It is convenient in the development which follows to repre- 

sent the error variance model as 

-t-i+l     ^-l+l 
2.2.2 

where 

2i+] 

Q    = l/a 

I i 
a    | 

2.2.3 

Using Equation 2.2.2, the estimation gain matrix K,  reduces to 

K = (X.^QT1, X. .) X. , QTi. —   —i+l-%+l —i+l'  —l+l -H + l 
2.2.4 

Where X.  is the same as X_ of Equation 2.1.7. The subscript of X. , 

affords a means of writing a recursive definition 

X. . 
—l+l 

L+l 

X. 
—1 

2.2.5 

where x. , is the vector of most recent values of the controlled variables 
—l+l 

Likewise the observations may be defined recursively as 

Xi*i 
Y. 
—l 

2.2.6 

Using Equations 2.2.4, 2.2.5, and 2.2.6 the estimation equation 



(Equation 2.1.4) now becomes 

ii+1 = (-i+l 9i+i 4L+I)_ -i+l 2l+i -i+l       2.2.7 
A 

Further use of the stepwise recursion for 3 leads to 

(a x. . xT . + (l-a)xToT1X.)A.6 = ax. .(y. ,-xT ,30 2.2.8 
*• —l+l —l+l      -a^i —\J  i—   —i+l ^ l+l —i+l—i' 

where 

A.3 = B. , - 3. 
1—  —1+1  —1 

Equation 2.2.8 represents the starting point for the develop- 

ment of the recursive estimation algorithm. The assumption involved 

in the use of this equation are 

1) Observation model (Equation 2.1.1) 

2) Linear Estimation        (Equation 2.1.4) 

3) Unbiased Estimation       (Equation 2.1.5) 

4) Minimum Variance Estimation (Equation 2.1.6) 

5) Known Error Moments       (Equation 2.1.2 and 2.1.3) 

6) Exponential Error Variances (Equation 2.2.1) 

Of particular note here is the fact that no assumptions are made re- 

garding distribution functions. Such assumptions may be delayed until 

the estimates, 3_ and their variances must be interpreted statistically. 

2.3 Statistical Interpretation. 

It was shown in the previous development that the recursive 

estimation scheme (Equation 2.2.8) produces an unbiased, minimum var- 

iance estimate of the parameters, 3. The estimator, 3., is itself a 

random variable thus a statistical measure of its closeness to the true 

parameters, &,  is needed. Such a measure is the covariance matrix, 

P. 

P.  = E l"(3. , - 3. JCfL •, " 3. ,)T1 2.3.1 —i+l   L •i+i —i+l'—i+i —i+l' j 

Using Equation 2.2.7 and Equation 2.1.1 the covariance matrix may be 

written as 

P. . = a2(xT . QT1, X. J"1 2.3.2 
-^. + 1       ^-1 + 1 -^1+1 —1 + 1 
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Once again a recursive formulation may be employed 

Li+1 " °2   tOX1+1 x{+l 
+ ff2Cl-«) P.:1)"1 2.3.3 

or equivalently by the matrix inversion lemma^ ' 

P. . = T^-[P- ~ ct P.x. . (axT .P.x. . + (l-a)a2)_1xT ,P.]  2.3.4 —l+l  1-or—i   —l—i+l v —i+1—i—i+l  v '    '    —l+l—iJ 

The preceding result illustrates how the covariance matrix may be pro- 

pagated forward in time without the inverse indicated in Equation 

2.3.3.  In fact only scalar inversion is required in Equation 2.3.4. 

In the development of Equations 2.3.3 and 2.3.4 it was pre- 

sumed that the necessary matrix inverses always exist.  In particular 
T   -1      -1 

the existence of(X. . Q. , X. ,)  was never questioned.  It is quite —l+l -H+l —l+l n ^ 
possible in the progression of this matrix that it becomes singular 

for all practical purposes. For example, if the data became constant 

(i.e. x. . = x_. for all i), then the recallable history will look 
l+l   l T   -1 

like a single sample. The rank of the matrix, X_.  Q. 1 X.  , is then 

one. 

In the case of singular or very poorly conditioned solutions 

of Equation 2.2.8, we may wish to employ a generalized inverse which 
As 

would minimize some suitable norm of A.3. Thus with an incomplete data 
l   ^ 

set we would hold the parameter estimates, §_,  as constant as possible. 

The covariance matrix in this case may be found by first rearranging 

Equation 2.2.7 and substituting Equation 2.1.1. 

T   -1      A     T   -] T   -1 
(x! . Q.1, X. ,)B. , = x! . Q, , X. . 6. . + X.' . Q. ,V. , —i+l -%+l —l+l''—I+I  —l+l ^l+l —l+l —l+l  —l+l ^i+1—i+l 

2.3.5 

Now employing a generalized inverse leads to 

* T   -1      T T   -1 
6. , - B. , = (X , Q. . X. .) X.   . Q. . V. . 2.3.6 
-i+l  —i+l   —i+l %+l —l+l' —l+l ^l+l -l+l 

where, T, indicates generalized inverse. The covariance matrix follows 

from its definition 
T  -1       T  -1     T T 7    T  -1     ' 

2,VT _-l v  .TX nQ. ,X. ,[(X .Q. .X. ,) ] =a (X .0. ,X. .) 
p. , = a (x. ,Q. ,x. ,) —I+I^+I-I+I1^—i+1-^i+i—i+iy J   -l+i^i+i-i+r 
—1+1    —l+l-^* 1—1+1J 

2.3.7 
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The interpretation of the covariance matrix, P.  , is closely connected 

to the interpretation of the error covariance matrix, V. -. If the 

latter represents the second moment of a Gaussian distribution, then 

P.+ may be interpreted as the second moment of a Gaussian distribu- 

tion of the estimate £. The covariance matrix, P. ., defines the 

variance ellipsoids analogous to the familiar a, 2a, 3a, etc. limits 

of a Gaussian distribution in one dimension. 

2.4 Computational Considerations. 

From a computational point of view, the recursive estima- 

tion scheme, Equation 2.2.8 is a linear algebraic equation of the form 

A. , Z. , = B. . 2.4.1 
-l+l -l+l  -l+l 

where  A.  = (a x. .xT . + (1-ct) xT  Q71 X.) 2.4.2 
—l+l  *• —l+l—i+l  l  ' —1  —i —xJ 

1.   .   =  A.3 2.4.3 
—l+l   i— 

B. , = a x. ,(y.Al - xT . 6.) 2.4.4 
—l+l    —i+lv/l+l  —l+l —iJ 

The matrix, A, is symmetric and is of uncertain rank. Both A and B^ are 

functions of the parameter, a, which hereafter will be viewed as a para- 

meter which may be reset at each time.  Thus any information generated 

in computing the estimator, 3.-+1, may also be used to determine the 

covariance of the observation errors. Thus the statistics of the 

observation errors may be subjected to adaptation. Since it is intend- 

ed here that .3-+1 be used as a predictor in the interval (i+1, i+2), the 

most appropriate value of a is that which minimizes the single step 

prediction error. If such an a can be found for &.,  it will simply be 
^ —i 

used to compute ^+j' The single step prediction error, E , is defined 

by 

E = (y. , - xT . BO 2.4.5 
r  v/i+l  —l+l —iJ 

2 
The minimum of the squared prediction error, a , will be approximated 

by a one step quadient search over the parameter, a 

12 



where     a.+1 = a. - e ^ 2.4.6 

4JL   = 2E xT . £!i| 2.4.7 

Note that in this adjustment of a the only matrix inversion required 

is the same one completed in the computation of B.     By such a scheme 

a new value of a may be found with very little computation over and 

above that required to compute (3. 

In computing the estimator, £. 1, it must be recognized that 

A.  , may become nearly singular.  In such degenerate cases the computa- 

tion of the estimator is very poorly conditioned.  In order to have a 

measure of approach to singularity, a recursive bound for the eigen- 

values of A. 1 is computed. Using Equation 2.4.2 and the Rayleigh 

Quotient it can be shown that 

(Xx)    >(1-«)(VA. 2.4.9 
—l+l —l 

(X ).   < (l-a)(X ). + axT . x. , 2.4.10 v n'A. . — v  J^ nJk.        —l+l —l+l 
—l+l —l 

where X. and X are the smallest and largest eigenvalues respectively. 

((X.). should be read "the ith eigenvalue of A").  By computing these 

bounds, the condition of A. 1 can be approximated and used to trigger 

a generalized inversion whenever necessary. 

2.5 Identification of Discrete Systems 

The recursive estimation technique developed in the previous 

section will now be used as a basis for identification of dynamical 

systems. As an example suppose the system to be identified is modelled 

as a linear discrete system of the form, 

X.+1 = £ (i, i+1) X..+ i UL 2.5.1 

15 



where X. = state at time i 

£(i, i+1) = state transition matrix from i to i+1. 

As an example consider a single input, single output system. 

In such a system the state vector will consist of 

u. 

X. = E^x. 

and the input forcing vector may be 

U. 
—l 

u. 
—l 

E  u. 

E'2u! 

where E x. 
1 

,n _ 

Vn 
7+n Z x. 

l 

2.5.2 

2.5.3 

(E" = E(E(E(---(•)(---); n applications of E) 
n times 

In this example suppose the Z-transfer function was 

G(Z) 
3    2 

eZ + fZ 
4  3   2 

Z -aZ -bZ -cZ-d 
2.5.4 

The state variable representation of such a system is 

U. 
—l 

a b c d 

1 0 0 0 
X.   , 
-1+1 

= 
0 1 0 0 

0 0 1 0 

~e    f 

0    0 
X.   + 
—1 0    0 

0    0 

2.5.5 

14 



X. = 
where    1 

Li -1 

l -2 

1 -3 

; u. 
i-l 

The objective of an identification algorithm for such a 

situation is the estimation of the values of a, b, c, d, e, and f. 

The recursive estimation algorithm described in the previous section 

is directly applicable after the following transformations are made 

Discrete System Estimation 
Variables Variables 

X. 
I yi 

fxi-l' xi-2' xi-3' xi-4* 
T 

X 
—i 

Vi' Ui-2] 

[a,b,c,d,e,f] ? 

The viewpoint employed here is that the most recent output observation 

is subject to error, e. There is an underlying assumption that the 

other variables, X., are error free. To the extent that such an assump- 

tion is not valid, these errors may be thought of as included in e 

by the following 

,T e. = Error in x. +8' ,.  [Error in X. ,] 
I l   i-l   l        —i-l 

2.5.6 

A more formal representation of these errors is not tractable at the 

present time, either by conventional regression analysis or by filtering 

theory. 

2.6 Identification of Continuous Systems. 

In contrast to the previous section we will now develop a 

formulation of a continuous system which will permit its identification 

by the proposed algorithm. Most of the information suggested in the 

15 



literature require the use of derivatives of state variables as 
fl 41 observations: ' ' This is to be avoided if possible because of the 

excessive errors involved in observing or approximating these derivatives. 

the system to be considered here is of the form, 

X = A X + B U (Nxl) 2.6.1 

Where A and B^ are the parameters (perhaps time dependent) which must 

be estimated. The analytic solution of this equation over the time 

interval is 

X. . = 4 X. + R U. —l+l  x —l I 

where A = exp (AAx) 2.6.2 

R = (£ - 1)  A_1B 

and, where for the moment, A and jJ are treated as constants. Now 

Equation (2.6.2) is of the same form as Equation 2.5.1, but the state 

variables are not interrelated as in Equations 2.5.2 and 2.5.3. Here 

the state variables have been carried over from the continuous form, 

Equation (2.6.1). 

The identification problem has now been cast in the form of a 

problem of estimating <£_ and R. Using the algorithm described in the 

section on multivariate observations, the estimates are obtained by 

first transforming 

Equation (2.6.2)  Estimation Equations 

4_ and R §_ 

X. and U. X. 
—l    —i —l 

*i+i *i 

The estimates, B_,  represent an identification of the discrete form of 

the original system. The conversion back to the continuous form is 

most readily accomplished by 

16 



1) Noting that <£ and A have the same eigenvalues, first 

diagonalize £ 

i = §.2<i)£"
1 " *^T • Se^A^S"1 2.6.3 

D. = x Ln D. 2.6.4 
-A   AT   -<|) 

A = S DAS 2.6.5 — A— 

where D, and D. are diagonalizations of $ and A respectively and the 

above computations may involve complex arithmetic. 

2) From A, <)>, and R; B^ may be recovered 

B = A (cj> - I)_1R 2.6.6 

2.7 Multivariate Observations, 

The derivations of the previous sections are readily extended 

to include more than one observation at each time step. Beginning with 

the model of the random process 

£i - *i £i + h 

E(V.) = 0 27A 

E(V.V.T) = R. 
—l—i     l 

We wish to estimate, &_. , such that 

i 
6. = I    k.y. 2.7.2 
-1 j*o ^ 

E(|L) = ^ 
A 

var (6.) is minimized, 
—l 

The observation errors are readily modeled as 

R. = - r 2.7.3 
—l  a — 

17 



R. «. =  =- r 2.7.4 

The estimates are obtained in a form similar to the Kalman Filter for- 

mulation 

3- , = 6- + P. xT R71 (y. - x. 8. J 2.7.5 
—l+l  —1  -1 —1 1  v'i   1 i-l' 

Z± '   t^il"1 *i+ Cl-OJPjJj)"1 2.7.6 

or in the special case of 

r = 02I, 2.7.7 

it follows that 

ii+1 - h + ^i £ (Xi-ii.i) 2.7.8 

Q.  =  (oxT x.  •  Cl-cOQT^r1 

where Q.  = -2 P. 
-%     a   —1 

All the eigenvalues of (£• lie in the range 

(l-oOCA.)-.! < CX.)n_! < (l-a)(A )n_i + a(A ) T v   v ly0. , —  J Q.  —     n'Q*     rrx. x. 
-^l-l    J -% -^a+l      —1 —a 

where (A.)0 should be read "the jth eigenvalue of Q" and 

more conservatively 

(1-rOCAj) -1 < (A ) -l < (l-a)(A ) -1 • a Tr(x.Tx.) 
-*i-l    J -ii -^i-1 

2.7.9 

2.7.10 

2.8 Single Input - Single Output Models. 

Much of the analysis of the previous section is simplified, 

and the computations improved if one is dealing with a single input- 

single output model. 

Consider for instance 

x + ax + bx = cU(t) 2.8.1 

18 



The derivatives may be approximated as follows 

" . £*L   + o (At
2) 

1  Atz 

x±  = (Ax.^ + Axi:i)/(2 At) + 0 (At ) 

When these approximations are used in the original equation 2.8.1, the 

result is a finite difference equation. 

a,A2x. + a-(Ax. + Ax. .) + a_x. = cU. + 0(At2)       2.8.2 1  l   2V i    i-1/   3 I    i   v 

or 

(a.+a-)Ax. + (a,-a.)Ax. , + a_x. = cU. + 0(At )      2.8.3 1 2  I    2 1J     i-l   3 I    l 

Noting that 
,      .   2+aAt ..,-2 
(aj + a2) = —2— Lt 

a3,b 

Equation 2.8.3 may be converted to 

Ax. = — x. + ^—^1 Ax. , + —-— U. + 0 (At4)  2.8.4 
l    ai+a2 1   (oti+otj)   1_1  ai+a2  x 

2 
where any approximation in U. must be good to within 0(At ). The 

identification problem is now one of estimating the coefficients of 

2.8.4 where the following conversion is made 

Discrete System Estimation 
Variables Variables 

Axi yi 

T 
[x., Ax. , U.] x. L l'  I -1,  l' —I 

r 3_ . _1 2 .  c , gT 

l+a2 ' ai+a2 ' ai+a? — 

19 



3.  DATA HANDLING ASPECTS OF ESTIMATION 

3.1 Discussion. 

In any actual estimation task there are always a variety 

of problems which arise because of the form of the data. Where one 

may wish to have a continuous record of the input-output behavior 

of the system, in fact it may be a finite record, discretized without 

regard to the requirements of an estimation algorithm. Many of these 

problems were actually encountered in the application discussed in the 

next section. There the data was available in finite records where 

each record represented one pass of a target for a man-machine system. 

An example of the input and output data as a function of time is shown 

below. 

INPUT OUTPUT 

TIME TIME 

There were a great many of the data records as shown above. No one 

record contained sufficient information for estimation purposes. 

In order to obtain a smooth, extended data record, each 

individual record was repeated in a reverse direction, as illustrated 

below. 

INPUT 

OUTPUT 

20 



The change to a new data record was always done at time • 0. Thus the 

multiple data records were concatenated to form one large record without 

discontinuities. With data in the form illustrated above, the recursive 

estimation algorithm could be expected to provide an updated model for 

each sample in the data. 

3.2 Converging to a Universal Model. 

The model obtained from a recursive estimation algorithm will 

change from step-to-step in the estimation. As new information becomes 

available, the estimator will alter the model to minimize the estimation 

and prediction errors. No matter how accurate such a model is, it 

may be of limited value if it fails to condense the data to a smaller 

more fundamental set. 

At the cost of somewhat greater prediction errors the estimat- 

ed model may be forced to converge to a single "universal model" by 

removing a from Equation 2.2.8 which leads to 

Cxi + 1xi+1
T + Xj Q^X.) A.$ • xi+1 (y.+1 - x{+1£)      3.2.1 

The variance, P_. ., tends to zero thus forcing the convergence to the 

estimates. 

3.3 Preliminary Model Validation. 

A number of controls are available during estimation to pro- 

vide measures of performance of the estimated model.  At each step 

of the algorithm discussed in the previous section, the residual error, 

y. - x. B. 3.3.1 

and the single step prediction error 

y.  .   - x. , 6. 3.3.2 7 l+l  —l+l -i 

are available.  Likewise, the covariance matrix, P., is also readily 

available, but perhaps difficult to use without the statistics of the 

observation errors being specified. The correlation matrix based upon 

P_.   is quite useful in determining the extent to which the model para- 

meters represent the same thing. 

21 



Once a model is expected to be valid for a particular data 

record, that model may be used to reconstruct all the other data 

records. The reconstructed record may be compared with the actual 

record on the basis of residual error and prediction error. 

It is emphasized that the validation discussed here are 

preliminary. It means little to have a model reconstruct the data 

whence it came. This preliminary validation must be viewed as a 

necessary but not sufficient step in the validation process. The 

ultimate validation must be based upon the model's ability to "stand 

along" in place of the actual process. Stability constraints may be 

required to insure that the dynamic model is a valid replica of the 

real thing. 

4.  APPLICATION OF IDENTIFICATION ALGORITHMS. 

4.1 Discussion. 

The methodology developed in the previous sections is 

readily applied to the very real problem of understanding the behavior 

of man in a tracking task. (See Appendix B for description of the 

system being controlled by man) As a reasonable cause-and-effect model 

of man we take 

6+a16+a26 = a3 (6(t-T) + a46(t-T) + a50(t-T))        4.1.1 

where    6 = Manual output, perturbation from nominal 

6 s Tracking error 

T = Delay time 

Using the methods of Section 2.8, this model is readily discretized 

to become 

A6i-1 = bl 6i-l+b2A6i-2 + b4Aei-l-T+b4Aei-2-T+b5Aei-3-T+°(At^ 

4.1.2 

where   T = T At 
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The model parameters, bj, b•,  b_, may be used to recover the 

original parameters, a , a-  a-. One would expect both sets of 

parameters to be time varying and thus require a robost estimator to 

determine their values. Little will be gained, however, if the estimated 

parameters are all permitted to vary with time. The resulting model 

will have more time functions than the original data and as such will 

not represent a condensation of the data. Such a condensation of the 

data is critical to establishing a fundamental understanding of the 

behavior of man. 

Although it is acknowledged that man is adaptive, and thus 

time varying in his description, the search for a universal, constant 

parameter, man is worth pursuing. The resulting model, if it is valid, 

would represent a system independent, fundamental understanding of 

the behavior of man. 

4.2 The Search for a Universal Man Model. 

The methods of Section 2.4 and 2.8 were adopted to the 

search for a universal man based upon the model formulation of Equation 

4.1.2.  Performance data in the form of (69) pairs were used to estimate 

the parameters b,, b~, b,-. The original estimates which were time 

varying were obtained using a fading memory estimator. After the pre- 

diction errors settled out to values on the order of 0.05 degrees 

manual rotational output, the fading memory was removed and the para- 

meters allowed to seek universal values. The resulting model develop- 

ed a somewhat degraded performance to the level of 0.1 degrees of 

rotational output error.  The universal dimensionless coefficients 

turned out to be 

bj = -0.0103 

b2 = 0.272 

b3 = 0.0368 

b4 = 8.39 x 10"
4 x 17.453 

b5 = 0.0135 
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with a time delay of 0.15 sec associated with the tracking error input. 

When converted to the continuous form, Equation 4.1.1, the 

coefficients become 

al 
22.9 sec"x 

a2 
= 

_2 
6.49 sec 

a3 
= 

_2 
404. sec 

a4 
= .0672 sec 

a5 = .763 x 10"3 sec"2 

4.2.2 

4.3 Validation of the Universal Man. 

As indicated in the previous section, the universal man 

was able to reproduce the data whence it was created to within 0.1 

degrees of rotational output position. It soon became apparent that 

such a validation was not good enough. The stability constraints were 

not included in the estimation algorithm, and as a result the continu- 

ous model of man was incapable of handling the control task in a 

complete system simulation. 

Further analysis of the data used to force man (i.e. 6(t)) 

indicated that the frequency components of 8(t) were all of lower 

frequency than natural frequency of man. *  This suggested that the 

neuro-muscular terms of the estimated man were spurious (i.e. b, and 

b2 were probably not estimated correctly). 

At this point the estimated man model becomes a point of 

departure for an orderly search for the correct neuro-muscular response 

of man. 

Previous studies indicate that the eigenvalues of man are 

limited to at most -10 sec" . *•   Taking one eigenvalue at -10 sec , 

a second eigenvalue on the order of -580 sec  gave the most reason- 

able overall response. On this basis the continuous representation 
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of man becomes 

a  = +590 sec" 

_2 
a 2 = 5800. sec 

_2 
a_ = 4040. sec 

_2 
a. =  .0672 sec 4 

-3   -2 a,. =  .763 x 10  sec 

The model is limited by the fact that it is a localized model which in 

no way models man's behavior in pursuit. The response to track error 

is a compensatory response or nulling response.  In more mathematical 

terms it is acknowledged that the man model obtained is a perturbation 

model representing the motion of man with respect to some nominal 

motion. This nominal motion of man was important in the validation 

of the man model and was approximated by 

6Nominal = K *T 4.3.2 

where A~ = Angular rate of the target. 

K  = Constant on the order of 1.0. 

4.4 Summary of the Validation Results. 

The man model represented by equations 4.3.1 and 4.3.2 was 

used in a number of different tracking situations. These results are 

plotted and shown in the Appendix C. The purpose of this section is 

to provide a comparison of man's actual performance and the predicted 

performance on the basis of extremes. One of the most important 

performance criteria to be applied in judging the performance of a 

model is the ability to limit the extreme values of track error. The 

performance of the overall system is closely related to man's ability 

to limit the extremes of track error. Three distinctly different 
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phases of performance are available for comparison purposes: 

(1) Acquisition phase 

(2) Firing phase 

(3) Crossover phase 

Table 4.4.1 shows the performance of the universal man model 

(Equations 4.3.1 and 4.3.2 with K = 1.1) and the actual man during 

these phases of tracking. 
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TABLE 4.4.1 

COMPARISON OF MAN MODEL WITH ACTUAL MAN* 

*      MAXIMUM TRACKING ERRORS, MILLIRADIANS 
TARGET       TARGET   ACQUISITION PHASE FIRING PHASE CROSSOVER PHASE 

IDENTIFICATION PARAMETERS   MODEL   MAN     MODEL  MAN   MODEL   MAN 

MMP1 A=400m        6.2 

V=231.6 m/sec 

X=450m 

10.5 3.5 3.0 9.4 

MMP3G2      A=800m        6.7 

V=231.6 m/sec 

X=450m 

13.6 4.9 5.3 9.4 13 

MMP5G2      A=200m        3.4 

V=128.6 m/sec 

X=450m 

2.2 2.5 3.7 3.6 

MMP6G1 A=400m 

V=180 m/sec 

X=250m 

2.7 10.9 3.8 6.7  24.2 20 

** 

A = Altitude, V = Velocity, X = Ground Distance at crossover 

Man Model is Equation 4.3.1 and 4.3.2 with K = 1.1 
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4.5 Approximations to the Man Model. 

In the final man model, Equations 4.3.1 and 4.3.2, some of 

the parameters are of little significance in describing the behavior 

of man. In particular, the smallest eigenvalue, -580 sec , is of 

little significance since its effect can only be observed at very high 

frequencies. Likewise, the 0 term has been found experimentally to 

have very little effect on the performance. Thus we might consider 

the following model: 

6 + a-fi = a3e(T-T) + a48(T-T) 4.5.1 

6M  .   =KA. 
Nominal     1 

where a1 = 10 sec 

a_ = 6.97 sec 

a, 

•1 

4.5.2 
.0672 sec 

1.0 sec 

A system block diagram of this model is shown in Figure 4.5.1. 

\ 
- K 

-TS 
e 

a3 
al 

1 + a.s 4 & 

+ \ Handle 
Bar Position 

Nominal 

FIGURE 4.5.1 APPROXIMATED MAN MODEL 
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APPENDIX A 

DOCUMENTATION OF ESTIMATION ALGORITHMS 
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MAIN 

PURPOSE: Overall Control of the Estimation Algorithm 

SPECIFIC FUNCTIONS:  1) Call Ready 

2) Set-up Estimation Cycle 

3) Track Eigenvalues 

4) Up-date Covariance Matrix, D=DEMAT~ 

5) If SSW(7) then Full Inverse with no 

Weighting 

6) If SSW (1) then Stop. 
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FLAT 

PURPOSE: Controls Complete Deflation Unconditionally 

SPECIFIC FUNCTIONS:  1) Call on Orthogonalization Routine 

2) Set No. of Good Rows to 1 

3) Calls UDATE for new B 

INPUTS REQUIRED: 1) DEMAT 

2) x, y 

3) BI (i.e. previous model) 

SUBROUTINE     FLAT 

CALL   ORTHO 
ICT=1 

CALL  UDATE 
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SUBROUTINE EIG 

PURPOSE: To Approximate the Eigenvalues of the Inverse of the 

Covariance Matrix. 

SPECIFIC FUNCTIONS:  1) Decompose DEMAT 

2) Inverse Power Iteration for RL1 

3) Power Iteration for RL2 

4) I7|SZj: Largest absolute value of SZ_ 

INPUTS: 

OUTPUTS: 

1) DEMAT 

RL1 - Smallest Eigenvalue of DEMAT 

RL2 - Largest Eigenvalue of DEMAT 
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SUBROUTINE    EIG 

IFMI 
NO 

YES 

Z-DEMAT 
ICT— SIZE  OF I 

CALL   DECOM 

SZ — Yl 
CALL    SUBS 

SM — T/ISZJ 

Y_i— SZ/SM 
SM — 1/SM 

RL1 —SM RL1 —SM 

SZ—(DEMAT) Y2 
SM^17lSZI 

Y_2 — SZ/SM RL2 —SM 

RL2—SM 

CN— RL2/RL1 
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SUBROUTINE DERNK 

PURPOSE: Controls Partial Deflation of DEMAT 

SPECIFIC FUNCTIONS: 

INPUTS: 

1) Calls Orthogonalization 

2) Isolates Good Rows In Upper Part of 1_ 

3) Call UDATE for New B 

1) DEMAT 

2) x, y 
3) BI   (i.e.  previous model) 

SUBROUTINE    DERNK 

CALL   ORTHO 

"GOOD ROWS 

] GARBAGE 

T—NO. OF  GOOC 

CALL   UDATE 
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SUBROUTINE ORTHO 

PURPOSE: To multiply DEMAT by a matrix which has mutually 

orthogonal rows. The first row is x. 

SPECIFIC FUNCTIONS: 1) Gram Schmidt Orthogonalization with 

respect to x 

2) Multiply result of 1) by DEMAT. 

SUBROUTINE    ORTHO 

100 XT         1 
±. - 

ORTHOGONAL 
TO    X 

102 
I —1( DEMAT) 
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SUBROUTINE FMI 

PURPOSE: Controls Full Inversion of DEMAT 

SPECIFIC FUNCTIONS:  1) Decompose DEMAT 

2) Compute Right Hand Side 

3) Call SUBS 

4) Compute New Model, B_ 

INPUTS: 1) DEMAT 

2) x, y 

3) BI 

SUBROUTINE    FMI 

Z -*-   DEMAT 

ZSAY •*- I 

CALL    DECOM 

S_Z.—-aX(I-XTBI) 

CALL   SUBS 

B--B_I+SZ(I) 
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SUBROUTINE DECOM 

PURPOSE: Decompose a Symmetric Positive Definite Matrix Stored 

in Z 

SPECIFIC STEPS: 

INPUTS: 

OUTPUT: 

Choleski Decomposition 

1) Z 
2) Rank of Z_ in ICT 

T 1)   L of Z = L L    stored  in upper right 

triangular part of Z_ 

SUBROUTINE     DECOM:     ENTER    WITH    ICT n NO.  OF   ROWS    OF 
I    (i.e. ICTsRANK  OF   £) 

I—- 

\ 
\       L 
\ 
\ 
\ 
\ 
\ 

GARBAGE 
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SUBROUTINE SUBS 

PURPOSE: Forward and Back Substitution in Solution of 
* 

L^ Y = B^ By Forward Substitution 

T 
L^ X = Y By Back Substitution 

SPECIFIC FUNCTIONS:  1) Forward Substitution 

INPUTS: 

OUTPUTS: 

2) Back Substitution 

1) L^ in upper right part of Z_ 

2) Right hand side in SZ_ 

1) Solution in SZ 

SUBROUTINE     SUBS:     jj    IS   IN   UPPER    TRIANGLE    OF    Z    WITH 

RANK   OF    ICT.     SZ    BEGINS   AS    RIGHT 

HAND    SIDE. 
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SUBROUTINE UDATE 

PURPOSE: Complete the Generalized Inversion of the Matrix, Z_, 

Having Known Rank, ICT. 

SPECIFIC FUNCTIONS:  1) Save Z in ZSAV 

2) Form Symmetric Positive Definite Matrix, 
T z«- z r 

* 
3) Solve Z_ X_ = B for X^ by decomposing Z_, 

* 
forming the right side, B^ and using SUBS. 

4) Update the Model, B 

5) B •*-  BJ_ + ZSAVTZ_1 B* (Pseudo Inverse) 

INPUTS: 1) Z, ICT (Matrix and Rank) 

2) x, y 

3) BI_ 

NOTE: Any estimation cycle which uses UDATE must have already used 

ORTHO. 
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SUBROUTINE    UDATE 

100 
ZSAY — I 

l+ZZ! 
DIMENSION: (ICT X N) (N X ICT) 

H 

400 CALL    DECOM 

"a(XTX),/2 (Y-XTBI)~ 

0 

SZ — 
0 
• 

• 

• 

305 
[ 

CALL   SUBS 

B—BI + ZSAVTSZ 
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SUBROUTINE AIM 

PURPOSE: To Compute a New Weighting Parameter, a. Precess the 

Model. 
8B 
-n * 

SPECIFIC FUNCTIONS:  1) Set up right hand side of A -^-  - B 

Conditioned upon whether A is full rank 

or not.  gB^ 

2) Solve for •*— by inverting A using new 

right hand side. 

3) Compute prediction error and smoothed 

prediction error. 

4) Compute new a using steepest descent. 

5) BI_ >*• B_; Precess the model index. 

INPUT 1) x, y 

2) XOLD, YOLD 

3) Decomposed DEMAT and ZSAV 

4) B;  previous model. 

5) EPAIM, step size in steepest descent. 
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SUBROUTINE    AIM 

402 SI— XQj£ (YOj£-xgjJ2T B) 

401 

SZ— 

(XTX),/2 (Y-XTB) 

0 

0 

YES 

CALL     SUBS 

S3-*-XTZSAV   (Z   ZT)-1  SZ/(l-o) 

101 

600 

SI-*- I-X_TB_ 

F(l)—SMOOTHED   SV 

a~*-a-€ A)M(2)   (si)  (S3) 

da 

103 BI--B 
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SUBROUTINE OBS 

PURPOSE: Observe new data and process last observation 

SPECIFIC FUNCTIONS:  1) Save last observation 

2) Save estimation coefficients (forward 

pass thru data). 

3) Observe new data 

4) Compute squared prediction error and 

squared current error for each tracking 

record. 

5) Validation of estimation coefficients 

with other tracking records for any 

target type. 
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SUBROUTINE    OBS 

SAVE    LAST   OBSERVATIONS 

XOLD(I)=X(I) 
YOLD    = Y 

YES 

SAVE   CURRENT   B's 

GOING 
FORWARD 
IN  TIME 

?, 
NO 

NEW OBSERVATION 
X's   & Y 

SO. PR  ER = Z(  )VN 

SQ. CUR. ER = 2( )2/N-l 

WRITE   ERROR'S,   B's    LINE   PRINTER 
WRITE    B's   ON   TAPE   (SENSE  SWITCH   E) 

VALIDATION 
PR   ER 
CUR ER 

1 
PAUSE   666 

READ   NEW    RECORD| 
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SUBROUTINE READY 

PURPOSE: General Initialization 

SPECIFIC FUNCTIONS:  1) Clear arrays and set indices. 

2) Position input tape. 

3) Name and position optional output tape. 

4) Input model configuration 

5) Initialize co-variance matrix diagonal 

values 
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SUBROUTINE    READY 

CLEAR    ARRAYS 
INITIALIZE     INDICES 

I 
READ   FILE   NAME,   RECORD* 
SIMULATOR   DATA   (UNIT ' 15) 

SENSE 
SWITCH   E   ? 

(SAVE   B's  ON 
TAPE ?) 

READ    FILE   NAME 
NAME   FILE,  UNIT ' 14 

READ*- AND  TYPE  OF   INPUTS   &   TIME   DELAYS 
SCALE    FACTOR,   DIAGONAL   OF  DEMAT 

I 
CALL   EIG 

READ   FILE   NAME, RECORD* (UNIT'14) 
# VARIABLES, # SAMPLES 
READ   B's   FROM   TAPE 



APPENDIX B 

SYSTEM DESCRIPTION 
AND 
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B.l  INTRODUCTION 

The Vulcan Air Defense System (VADS) is an antiaircraft artillery 

(AAA) weapon that provides close-in defense against low-flying aircraft 

and can be used against ground vehicles such as trucks, personnel 

carriers, and other lightly armored vehicles. The VADS utilizes a 20- 

mm6 barrel Gatling type gun having a fire rate of 3000 rounds per minute 

with preselected burst lengths or 1000 rounds per minute with burst 

lengths under operator's trigger control. The VADS is a manually operat- 

ed system equipped with a range-range rate only radar. The gunner is 

required to identify, acquire and track the target and operate the 

trigger for firing. 

The fire control system uses a two axes lead computing sight, 

mounted on the gun trunnion, to generate an angular displacement between 

the gun tube and the gunner's line-of-sight. The gunner must acquire 

the target in the sight optics and maintain the target in the optical 

sight reticles (15tf and 60pi concentric circles) by controlling the 

rate of gun motion in azimuth and elevation. The gun rates in conjunc- 

tion with the sight sensitivity parameter, T , which is approximately 

equal to ballistic time of flight of the round, are used by the lead 

computing sight to generate the lead angle between the gunners line-of- 

sight and gun position. The fire control prediction assumes the target 

is flying a straight line course at constant velocity. 

The radar provides only the present range and range rate. The 

instantaneous range and range-rate data are major inputs to the current 

generator which provides TN to the lead computing sight. The radar's 

position relative to the target depends upon the gunners ability to 

track the target.  It is positioned in angle by the gun mount position 

in azimuth and by the radar's own servo loops, which receive input 

signals of gun elevation and two components of lead angle, elevation 

and traverse. The radar must stay within +4 degrees of the target 

to maintain lock-on. 
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B.2 ANALYTICAL MODELS 

The mathematical representation of VADS is a nonlinear, time varying 

model of the Vulcan fire control system. The VADS model is comprised 

of submodels for the sight display, lead computing sight, sight current 

generator, turret servo and gun dynamics, hand controller and the operator. 

A model of the radar was developed but not included in the analytical 

model.  Instead, a target model is used to provide the flight path 

parameter inputs to the analytical model. The block diagram of the 

VADS mathematical model is shown in Figure B-l. 

B.2.1 Sight Display. 

The sight display is actually an integral part of the lead 

computing sight, however, it is considered either as separate component 

or combined with the man model in modeling the VADS. 

The sight display is the movable sight reticle.  It consists 

of two concentric circles, 15 and 60jd in diameter. The total field 

of view of the XM61 sight is approximately 400 mils and the diameter 

of the display aperature is 4 inches. Hence, the sight display is 

modeled as a constant, 10 inches/radian. 

B.2.2 Hand Controller. 

The operator's command to the system is transmitted through 

his manipulation of a hand controller (handlebars). The handlebars are 

rotated like steering an automobile for gun azimuth commands and are 

rotated vertically for elevation commands to the gun. The deflection 

of the handlebars causes a voltage to be applied to the inputs of the 

rate servo loop, thereby driving the turret and gun. The output voltage 

of the hand controller is a nonlinear function of handlebar position and 

rate. The differential equation relating the servo amplifier voltage, 

V, to handlebar deflection, 6„B, is 

V=Ke6HB    +KL6HB B'2-1 

where KQ is the nonlinear function relating voltage output to displace- u 
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ment of handlebars and K, is the aided laying tachometer gain. This 

nonlinearity will be discussed in more detail in subsequent paragraphs. 

The KL gain can be linearized to a constant without degrading the system 

performance. The aided laying tach's main function is to provide an 

output which is related to rate of change of handlebar deflection during 

the acquisition phase. 

B.2.3 Turret Servo Loop. 

The turret servo loops produce angular gun rates in azimuth 

and elevation in response to handlebar position, i.e. the turret sub- 

system is a tyle 1 servo system. The equations of motion for the turret 

servo loops are made up from the gun dynamics, operational amplifiers, 

torquer motors, tachometers and associated electronics. A simplified 

block diagram of the uncoupled servo loop for either axis is shown in 

Figure B.2. The gain, K.., in the tach feedback is a nonlinear function 

of handlebar deflection. 

Assuming that all the parameters are constants, a transfer 

function relating gun position, G, to voltage input, V, can easily be 

derived, i.e. 

KA 

G N^ + KAW 
V       RJTt              R J R - 9 

or m i m Rz   m I  <? + 11      o.i.i 

VS-+ K
AW        M

K
E 

+ K
A

K
IM 

where 
K  = Servo amplifier gain 

K~    =    Motor torque constant 

K_ = Motor back emf constant 

K  = Variable gain dependent upon handlebar deflection 
and tachometer feedback resistance. 

K  = Tachometer gain 
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N  = Gain ratio 

R  = Motor resistance m 

J„ = Combined motor inertia and load inertia referred to 
motor shaft 

t  = Electrical time constant of motor 

Let  T  -      m T R ? 7. 

KA 
and  KG = NCKg » KAKlKp) 

B'2-4 

then, Equation B.2.2 can be written as 

G      KG   

V = S(t T\,S2 + T„S + 1 B-2,5 
m b    CJ 

The time constant of the motor, t , is 0.002 sec. Since t is small '    m m 
(i.e.  t < <^ 1),  Equation B.2.5 can be reduced and approximated by 

G_ _ G  R 9  , 
V S(xGS - 1) B-z-° 

This is the uncoupled model of the turret servo loop. 

Equation B.2.3 and B.2.4 show that both x_ and IC, depend on 

Kj which is a function of handlebar position, fi^B* The variable gain 

K^. cannot readily be computed. In order to reduce modeling errors, Tr 

and Kg are assumed to be constant and all nonlinearity between 6„B and 

turret servo output are modeled in the hand controller's nonlinear gain 

Kfl. This nonlinearity is approximated from measurements taken from the 

VADS hybrid simulator. 

In the development of the man model, the operator is assumed 

to be operating the system in a tracking only mode (nonfiring), and the 

dynamic coupling between the gun axes is assumed to be zero. Hence, 

Equation B.2.6 is used as the model of turret servo and gun dynamics. 
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B.2.4 Sight Current Generator. 

For the purpose of this modeling effort, the sight current 

generator is defined as the subsystem which produces the sight sensitivity, 

T„, for the lead computing sight. Neither a discussion on principles 

of operation nor any developed mathematical model will be presented in 

this document CD 

Instead of using a analytical model of the sight current 

generator, a computer model is used to generate the theoretically correct 

T., for a straight and level flight path. From the known velocity and 

position of the target and the ballistic data of the ammunition, an 

interactive process is used to calculate the future range at which a 

projectile would intercept the target. Using the computed values from 

the interactions, the theoretical TM can be computed continuously using 
(2) 

the following equations, 

N  Dj 
+ a 

1 
"dT 

1-V dD -cos a 

B.2.7 

where 
tr - projectile time-of-flight 

a      - angle between target flight path and future range 
vector 

D„ - present range 

Dc - future range 
r 

V  - velocity of target 

For a known straight and level flight path, this equation provides 

values of TV. which are approximately correct. 
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B.2.5 Lead Computing Sight. 

The lead computing sight is the "heart" of the Vulcan fire 

control system. It performs the lead computation required to point 

the gun barrels ahead of the present position of the target. Since the 

projectile have a finite time of flight, the sight predicts the future 

position of the target, where the gun tube must be aimed, in order for 

the projectile to hit the target. 

Its principle of operation is based on the precessional law 

of a gimballed gyroscope. The case of the sight, which houses an electro- 

magnet, is mounted so that it moves with the gun. An eddy current disk 

is attached to the rotor of the two axis gimballed gyroscope. The electro- 

magnet is energized by a current signal generated in the sight current 

generator. When a moving target is tracked, eddy current forces are 

generated in the disk, creating a torque that causes the spin axis 

of the gyro to follow the gun with a displacement (lag) sufficient to 

provide the torque needed to precess the gyro at the gun rate. The 

magnitude of the electromagnet current determines the angular lag 

between the gun and the gyroscope spin axis for a given tracking rate. 

This angle is a measure of the lead angle being developed. Actually 

the reticle orientation relative to the gun differs from the gyro 

orientation relative to the gun by a constant ratio, a. This permits 

instantaneous response between the gun motion and reticle motion. An 

additional quantity, referred to as superelevation, is generated in the 

elevation axis of the lead computing sight. Superelevation compensates 

for ballistic drop of the projectile. 

A simplified model of the lead computing sight is developed 

by considering the motion of the sight, reticle and gun in a single 

plane. Assume the Vulcan is tracking a moving target in the horizontal 

plane as deplicted in Figure B.3. From this figure the following angular 

relations are obtained: 

AG " AGyro = gyT0 lag B'2'8 
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AQ - AR = X B.2.9 

Al  " AR = e
E 

where A,, = gun line of sight 

AGyro = gyr0 line o£ sight 

A_ = reticle line of sight 

A_, = target line of sight 

X      = lead angle 

8  = track error 

If the sight gyroscope with the eddy current disk mounted on its spin 

axis is rotating in an electromagnet field that is fixed to the gun, 

the precessional rate of the gyroscope is related to the displacement 

between the gun and the gyroscope by 

V " "K sin ' AG KS
V° ' 

where P, I and K are related to parameters of the sight current 
K  1 generator and the lead computing sight.  If PI = »r and Kc = (1 + a), 

the small angle approximation of Equation B.2.11 becomes 

:      AG " AGyro 
\5yro " (1 + 0)TN 

B.2.12 

The reticle is controlled by the sight gyroscope but their lines-of- 

sight relative to the gun differ by a fractional part of the lead angle, 

a\, i.e. 

AD - A_   = aX B.2.13 
R   Gyro 
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Substituting Equation B.2.13 into Equation B.2.9, the angular relations 

between the gun and gyro is 

AG " Vo = C1 + a) X B'2-14 

The right side of this equation is the gyro lag relative to the gun. The 

time derivative of this equation is 

*G " Vo = (1 + 0) * B-2*15 

Solving Equation B.2.12, B.2.14 and B.2.15 in terms of A. and A , yields 

a differential equation for the lead angle 

i. AG    X 
(l+O)  T„ B.2.16 

This equation is only valid for computing the lead angle in a single 

plane. 

In reality, the Vulcan fire control system is solving for 

two components of lead angle, traverse and elevation. Since the gun, 

reticle and sight gyro are not in the same coordinate system, trans- 

formulations are required to project the respective vectors into the 

same coordinate system. Neglecting superelevation and using small angle 

approximations, the dynamic equations of the sight in traverse, A^,, and 

elevation, X , can be approximated by 

Ar  cos E_     X_ 

*T " 1 + a   (1 + a)TN 

G       E 
AE = TTTST ~  (1 • a)TN 

B-2'18 

where E„ is the gun position in elevation. Although, the term, cos E^, 

is a liberal approximation of the required trnasformulations, the lead 

angles obtained from Equations B.2.17 and B.2.18 compare favorable with 

the results obtained from experiments using the Vulcan sight and more 
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elaborate analytical models that take into account the coordinate 

transformations. ' 
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Figure   B.3   Single   Axis   Lead    Computing   Sight   Geometry. 
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APPENDIX C 

TIME HISTORIES OF TRACKING ERROR 
FROM VADS SIMULATION AND DEVELOPED MAN MODEL 

The figures in this appendix show the tracking responses of the 

actual man and the developed man model. The results are shown for 

four different target conditions. The target is flying at a constant 

velocity and altitude on a straight fly-by course. 

The plots for the actual man are the averages of a trained gunner 

tracking the same target ten times. 

The data were obtained from a man operated simulation of the 

Vulcan Air Defense System's (VADS) fire control system. The different 

target fly-bys were designed to provide the gunner with tracking 

tasks ranging from easy to difficult. 

The tracking response of the model approaches the magnitude but 

not the frequency of the actual gunner tracking. 

One of man's limitations that tends to degrade system performance 

is his randomness. This effect is not included in the developed man 

model. The recursive estimated algorithm smoothed out this randomness 

in estimated the parameters of the model. 
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